Systematic variation in mRNA 3′-processing signals during mouse spermatogenesis

نویسندگان

  • Donglin Liu
  • J. Michael Brockman
  • Brinda Dass
  • Lucie N. Hutchins
  • Priyam Singh
  • John R. McCarrey
  • Clinton C. MacDonald
  • Joel H. Graber
چکیده

Gene expression and processing during mouse male germ cell maturation (spermatogenesis) is highly specialized. Previous reports have suggested that there is a high incidence of alternative 3'-processing in male germ cell mRNAs, including reduced usage of the canonical polyadenylation signal, AAUAAA. We used EST libraries generated from mouse testicular cells to identify 3'-processing sites used at various stages of spermatogenesis (spermatogonia, spermatocytes and round spermatids) and testicular somatic Sertoli cells. We assessed differences in 3'-processing characteristics in the testicular samples, compared to control sets of widely used 3'-processing sites. Using a new method for comparison of degenerate regulatory elements between sequence samples, we identified significant changes in the use of putative 3'-processing regulatory sequence elements in all spermatogenic cell types. In addition, we observed a trend towards truncated 3'-untranslated regions (3'-UTRs), with the most significant differences apparent in round spermatids. In contrast, Sertoli cells displayed a much smaller trend towards 3'-UTR truncation and no significant difference in 3'-processing regulatory sequences. Finally, we identified a number of genes encoding mRNAs that were specifically subject to alternative 3'-processing during meiosis and postmeiotic development. Our results highlight developmental differences in polyadenylation site choice and in the elements that likely control them during spermatogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Spata-19 New Variant with Expression beyond Meiotic Phase of Mouse Testis Development

Background: The study of specific genes expressed in the testis is important to understanding testis development and function. Spermatogenesis is an attractive model for the study of gene expression during germ cell differentiation. Spermatogenesis associated-19 (Spata-19) is a recently-identified important spermatogenesis-related gene specifically expressed in testis. Its protein product is in...

متن کامل

The Transacting Factor CBF-A/Hnrnpab Binds to the A2RE/RTS Element of Protamine 2 mRNA and Contributes to Its Translational Regulation during Mouse Spermatogenesis

During spermatogenesis, mRNA localization and translation are believed to be regulated in a stage-specific manner. We report here that the Protamine2 (Prm2) mRNA transits through chromatoid bodies of round spermatids and localizes to cytosol of elongating spermatids for translation. The transacting factor CBF-A, also termed Hnrnpab, contributes to temporal regulation of Prm2 translation. We fou...

متن کامل

Regulation of an RNA granule during spermatogenesis: acetylation of MVH in the chromatoid body of germ cells.

During mammalian spermatogenesis, the mouse VASA homolog (MVH; also known as DDX4), a germ-cell-specific DEAD-box type RNA-binding protein, localizes in a germline-specific RNA granule termed the chromatoid body (CB). Genetic analyses have revealed that MVH is essential for progression through spermatogenesis, although the molecular mechanisms of its function remain elusive. We found that the a...

متن کامل

Systematic variation in mRNA 30-processing signals during mouse spermatogenesis

Gene expression and processing during mouse male germ cell maturation (spermatogenesis) is highly specialized. Previous reports have suggested that there is a high incidence of alternative 30-processing in male germ cell mRNAs, including reduced usage of the canonical polyadenylation signal, AAUAAA. We used EST libraries generated from mouse testicular cells to identify 30-processing sites used...

متن کامل

Integrative proteomic and transcriptomic analyses reveal multiple post-transcriptional regulatory mechanisms of mouse spermatogenesis.

Mammalian spermatogenesis consists of many cell types and biological processes and serves as an excellent model for studying gene regulation at transcriptional and post-transcriptional levels. Many key proteins, miRNAs, and perhaps piRNAs have been shown to be involved in post-transcriptional regulation of spermatogenesis. However, a systematic method for assessing the relationship between prot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2007